On Blind Separability Based on the Temporal Predictability Method
نویسندگان
چکیده
This letter discusses blind separability based on temporal predictability (Stone, 2001 ; Xie, He, & Fu, 2005 ). Our results show that the sources are separable using the temporal predictability method if and only if they have different temporal structures (i.e., autocorrelations). Consequently, the applicability and limitations of the temporal predictability method are clarified. In addition, instead of using generalized eigendecomposition, we suggest using joint approximate diagonalization algorithms to improve the robustness of the method. A new criterion is presented to evaluate the separation results. Numerical simulations are performed to demonstrate the validity of the theoretical results.
منابع مشابه
Blind deconvolution using temporal predictability
A measure of temporal predictability is de-ned, and used for blind deconvolution of sound signals. The method is based on the observation that physical environments act as smoothing -lters, and therefore increase the predictability of signals. These smoothing e0ects can be reversed by a deconvolution -lter which minimises a measure of temporal predictability. This -lter is obtained as the close...
متن کاملDetermination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملEvaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function
In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...
متن کاملBlind Source Separation Using Temporal Predictability
A measure of temporal predictability is defined and used to separate linear mixtures of signals. Given any set of statistically independent source signals, it is conjectured here that a linear mixture of those signals has the following property: the temporal predictability of any signal mixture is less than (or equal to) that of any of its component source signals. It is shown that this propert...
متن کاملStudy on Forest Vegetation Classification Based on Multitemporal Remote Sensing Images
It is very difficult to classify forest vegetation in mountain areas because of the impact of complex terrain. A new method, classification of forest vegetation based on multi-temporal remote sensing, is proposed in this paper. The forest vegetation could get better classification precision by avoiding the interactions of different plants with multi-temporal images. So it enhanced the separabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2009